Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3- m InAs–GaAs Quantum-Dot Lasers

نویسندگان

  • Frédéric Grillot
  • Jean-Guy Provost
  • Hui Su
چکیده

Quantum-dot (QD) lasers exhibit many useful properties such as low threshold current, temperature and feedback insensitivity, chirpless behavior, and low linewidth enhancement factor ( H-factor). Although many breakthroughs have been demonstrated, the maximum modulation bandwidth remains limited in QD devices, and a strong damping of the modulation response is usually observed pointing out the role of gain compression. This paper investigates the influence of the gain compression in a 1.3m InAs–GaAs QD laser and its consequences on the above-threshold H-factor. A model is used to explain the dependence of the H-factor with the injected current and is compared with AM/FM experiments. Finally, it is shown that the higher the maximum gain, the lower the effects of gain compression and the lower the H-factor. This analysis can be useful for designing chirpless QD lasers with improved modulation bandwidth as well as for isolator-free transmission under direct modulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gain compression coefficient and above-threshold linewidth enhancement factor in InAs/GaAs quantum dot DFB lasers

We measure, for the first time, the gain compression coefficient and above-threshold linewidth enhancement factor (alpha parameter) in quantum dot (QD) distributed feedback lasers (DFB) by time-resolved-chirp (TRC) characterization. The alpha parameter is measured to be 2.6 at threshold and increases to 8 when the output power of the QD DFB is increased to 3 mW. The dependence of the above-thre...

متن کامل

Intrinsic limitations of p-doped and undoped 1.3 μm InAs/GaAs quantum dot lasers

The demand for fast and temperature stable lasers emitting in the telecom wavelengths drives the research on quantum dot lasers. While low and temperature insensitive threshold current densities are expected, InAs/GaAs quantum dot lasers emitting around 1.3 μm have not yet fulfilled their expectations. From the literature, one can observe that although high temperature stability can be achieved...

متن کامل

Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp

The dynamic properties of distributed feedback lasers (DFBs) based on InAs/InGaAs quantum dots (QDs) are studied. The response function of QD DFBs under external modulation is measured, and the gain compression with photon density is identified to be the limiting factor of the modulation bandwidth. The enhancement of the gain compression by the gain saturation with the carrier density in QDs is...

متن کامل

High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding

Articles you may be interested in MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers Appl. 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature Appl.

متن کامل

Differential Gain and Linewidth-Enhancement Factor in Dilute-Nitride GaAs-Based 1.3-μm Diode Lasers

The effect of the quantum-well nitride content on the differential gain and linewidth enhancement factor of dilutenitride GaAs-based near 1.3-μm lasers was studied. Gain-guided and ridge waveguide lasers with 0%, 0.5%, and 0.8% nitrogen content InGaAsN quantum wells were characterized. Experiment shows that the linewidth enhancement factor is independent on the nitride content, and is in the ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008